137 research outputs found

    Polynomial Interpretations over the Natural, Rational and Real Numbers Revisited

    Full text link
    Polynomial interpretations are a useful technique for proving termination of term rewrite systems. They come in various flavors: polynomial interpretations with real, rational and integer coefficients. As to their relationship with respect to termination proving power, Lucas managed to prove in 2006 that there are rewrite systems that can be shown polynomially terminating by polynomial interpretations with real (algebraic) coefficients, but cannot be shown polynomially terminating using polynomials with rational coefficients only. He also proved the corresponding statement regarding the use of rational coefficients versus integer coefficients. In this article we extend these results, thereby giving the full picture of the relationship between the aforementioned variants of polynomial interpretations. In particular, we show that polynomial interpretations with real or rational coefficients do not subsume polynomial interpretations with integer coefficients. Our results hold also for incremental termination proofs with polynomial interpretations.Comment: 28 pages; special issue of RTA 201

    Decreasing Diagrams and Relative Termination

    Get PDF
    In this paper we use the decreasing diagrams technique to show that a left-linear term rewrite system R is confluent if all its critical pairs are joinable and the critical pair steps are relatively terminating with respect to R. We further show how to encode the rule-labeling heuristic for decreasing diagrams as a satisfiability problem. Experimental data for both methods are presented.Comment: v3: missing references adde

    Labelings for Decreasing Diagrams

    Get PDF
    This article is concerned with automating the decreasing diagrams technique of van Oostrom for establishing confluence of term rewrite systems. We study abstract criteria that allow to lexicographically combine labelings to show local diagrams decreasing. This approach has two immediate benefits. First, it allows to use labelings for linear rewrite systems also for left-linear ones, provided some mild conditions are satisfied. Second, it admits an incremental method for proving confluence which subsumes recent developments in automating decreasing diagrams. The techniques proposed in the article have been implemented and experimental results demonstrate how, e.g., the rule labeling benefits from our contributions

    Automating the First-Order Theory of Rewriting for Left-Linear Right-Ground Rewrite Systems

    Get PDF
    The first-order theory of rewriting is decidable for finite left-linear right-ground rewrite systems. We present a new tool that implements the decision procedure for this theory. It is based on tree automata techniques. The tool offers the possibility to synthesize rewrite systems that satisfy properties that are expressible in the first-order theory of rewriting

    Hydra Battles and AC Termination

    Get PDF
    We present a new encoding of the Battle of Hercules and Hydra as a rewrite system with AC symbols. Unlike earlier term rewriting encodings, it faithfully models any strategy of Hercules to beat Hydra. To prove the termination of our encoding, we employ type introduction in connection with many-sorted semantic labeling for AC rewriting and AC-RPO

    Completion for Logically Constrained Rewriting

    Get PDF
    We propose an abstract completion procedure for logically constrained term rewrite systems (LCTRSs). This procedure can be instantiated to both standard Knuth-Bendix completion and ordered completion for LCTRSs, and we present a succinct and uniform correctness proof. A prototype implementation illustrates the viability of the new completion approach

    Normalized Completion Revisited

    Get PDF
    corecore